V . L . Marcar , S . E . Raiguel , D . Xiao and G . A . Orban V 1 and V 2 of the Macaque Monkey Processing of Kinetically Defined Boundaries in Areas

نویسندگان

  • G. A. Orban
  • G. A. ORBAN
چکیده

[PDF] [Full Text] [Abstract] , November 1, 2002; 12 (11): 1132-1145. Cereb Cortex J. A. Bourne, R. Tweedale and M. G.P. Rosa Coherent Motion Physiological Responses of New World Monkey V1 Neurons to Stimuli Defined by [PDF] [Full Text] [Abstract] , February 1, 2003; 13 (2): 189-202. Cereb Cortex S. Zeki, R.J. Perry and A. Bartels The Processing of Kinetic Contours in the Brain [PDF] [Full Text] [Abstract] , February 1, 2006; 95 (2): 862-881. J Neurophysiol J. Larsson, M. S. Landy and D. J. Heeger Cortex Orientation-Selective Adaptation to Firstand Second-Order Patterns in Human Visual [PDF] [Full Text] [Abstract] , March 1, 2006; 95 (3): 1864-1880. J Neurophysiol S. G. Mysore, R. Vogels, S. E. Raiguel and G. A. Orban Processing of Kinetic Boundaries in Macaque V4

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Processing of kinetically defined boundaries in areas V1 and V2 of the macaque monkey.

We recorded responses in 107 cells in the primary visual area V1 and 113 cells in the extrastriate visual area V2 while presenting a kinetically defined edge or a luminance contrast edge. Cells meeting statistical criteria for responsiveness and orientation selectivity were classified as selective for the orientation of the kinetic edge if the preferred orientation for a kinetic boundary stimul...

متن کامل

Processing of kinetically defined boundaries in the cortical motion area MT of the macaque monkey.

1. Electrophysiological recordings of 68 cells in the middle temporal area MT were made in paralyzed and anesthetized macaque monkeys. 2. Testing with our kinetic boundary stimuli always occurred under optimized conditions. To this end, the preferred direction, speed, stimulus position, and stimulus size of each cell were determined by quantitative tests. 3. The orientation selectivity to stati...

متن کامل

Zagreb, multiplicative Zagreb Indices and Coindices of ‎graphs

‎Let G=(V,E) be a simple connected graph with vertex set V and edge set E. The first, second and third Zagreb indices of G are respectivly defined by: $M_1(G)=sum_{uin V} d(u)^2, hspace {.1 cm} M_2(G)=sum_{uvin E} d(u).d(v)$ and $ M_3(G)=sum_{uvin E}| d(u)-d(v)| $ , where d(u) is the degree of vertex u in G and uv is an edge of G connecting the vertices u and v. Recently, the first and second m...

متن کامل

Computing the Szeged index of 4,4 ׳-bipyridinium dendrimer

Let e be an edge of a G connecting the vertices u and v. Define two sets N1 (e | G) and N2(e |G) as N1(e | G)= {xV(G) d(x,u) d(x,v)} and N2(e | G)= {xV(G) d(x,v) d(x,u) }.The number of elements of N1(e | G) and N2(e | G) are denoted by n1(e | G) and n2(e | G) , respectively. The Szeged index of the graph G is defined as Sz(G) ( ) ( ) 1 2 n e G n e G e E    . In this paper we compute th...

متن کامل

On exponential domination and graph operations

An exponential dominating set of graph $G = (V,E )$ is a subset $Ssubseteq V(G)$ such that $sum_{uin S}(1/2)^{overline{d}{(u,v)-1}}geq 1$ for every vertex $v$ in $V(G)-S$, where $overline{d}(u,v)$ is the distance between vertices $u in S$ and $v  in V(G)-S$ in the graph $G -(S-{u})$. The exponential domination number, $gamma_{e}(G)$, is the smallest cardinality of an exponential dominating set....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000